3.4 Wavelet Denoising for Image Enhancement
نویسندگان
چکیده
Image processing is a science that uncovers information about images. Enhancement of an image is necessary to improve appearance or to highlight some aspect of the information contained in the image. Whenever an image is converted from one form to another, e.g., acquired, copied, scanned, digitized, transmitted, displayed, printed, or compressed, many types of noise or noiselike degradations can be present in the image. For instance, when an analog image is digitized, the resulting digital image contains quantization noise; when an image is halftoned for printing, the resulting binary image contains halftoning noise; when an image is transmitted through a communication channel, the received image contains channel noise; when an image is compressed, the decompressed image contains compression errors. Hence, an important subject is the development of image enhancement algorithms that remove (smooth) noise artifacts while retaining image structure. Digital images can be conveniently represented and manipulated as matrices containing the light intensity or color information at each spatially sampled points. The term monochrome digital image or simply digital image, refers to a two-dimensional light intensity function f(n1, n2), where n1 and n2 denote spatial coordinates, the value of f(n1, n2) is proportional to the brightness (or gray level) of the image at that point, and n1, n2, and f(n1, n2) are integers. The problem of image denoising is to recover an image f(n1, n2) from the observation g(n1, n2), which is distorted by noise (or noise-like degradation) q(n1, n2); i.e.,
منابع مشابه
Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملComparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملAn Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملEnhancement of MRI Image Quality Using Preprocessing Techniques
Image pre-processing techniques are used to improve the quality of an image before processing into an application. This uses a small neighborhood of a pixel in an input image to get a new brightness value in the output image. These preprocessing techniques are also called as filtration and resolution enhancement. The medical image quality parameters are mainly noise and resolution. The main obj...
متن کاملQuantitative and Qualitative Evaluation for Gamma Radiographic Image Enhancement
This paper presents some image processing techniques that can be used for radiographic image enhancement. Contrast enhancement, filtering, denoising, and interpolation processes are carried out in this paper. Contrast enhancement is carried out using adaptive histogram equalization. Filtering is carried out using median, Wiener, Lee, and Kuan filters. Wavelet and curvelet transforms are used fo...
متن کامل